the writer's comments are (1) rare and (2) not by my standards.

The book's strong points? It's legible, paper is good quality, and it has more than 70 pages of index.

The book's weak points? As advertised, is not "a fundamental reference" to most "chemical, metallurgical, mechanical, and electronics engineers; physicists and other scientists; and such professionals as materials, product, plant, and design engineers." Its treatment of chemical engineering technology from absorption through water treatment is too elementary. Where it isn't elementary, it tends to be parochial; for example, distillation is treated from the control standpoint which isn't in itself bad, but it doesn't represent the whole subject. Definitely sixth-grade are "Plastics," "Petrochemical Complex," "Process Industries," "Process Plants, Packaged" and others.

As for chemical process technology, it's a question of emphasis. Some thirty or so rather rare elements from actinium through ytterbium are in total number of pages (more than 100) given greater coverage than industrially significant materials such as beer, butadiene, caprolactam, cement, phenol, phenolic resins, polyethylene, polystyrene, PVC, propylene oxide, urea, and zeolites. The reader has probably guessed that this vitriolic review has resulted from the writer finding his favorite subject, "Beer," treated only by six words under the heading "Pasteurization." As for you sophisticates, don't laugh; "Wine" gets the same treatment. And the teetotalers have nothing to be self righteous about; "Ice-cream" is in the same boat. Nitrogen compounds such as amines, amides, imides, amino acids, peptides, proteins, and pyridines are given coverage far out of proportion to the usefulness of the information to technically trained people in industry.

The organization of the subject matter is not what the writer would prefer. Separating Caustic and Chlorine. Rubber and Elastomers, Ethylene a cathode. Oxide and Ethylene Glycol, Chlorination and Chlorine Organics, Paper and Pulping, Iron, Iron Ore, Iron and Steel, Iron and Steelmaking does not make for one-stop shopping.

Well, as the saying goes, beauty is in the eye of the beholder. Unfortunately, the writer is not sufficiently facile with cluding Chapter 6, Electroinitiated words to paraphrase this saying so that it applies to reviewing a book, but hopefully, the reader will understand.

> C. L. Becker fields. M. W. KELLOGG Co.

erence lists, carefully culled for value," Introduction to Organic Electrochemistry: is Appendix A, Questions and Answers Techniques and Applications In Organic (over 30 pages). This reviewer read Synthesis, M. R. Rifi and Frank G. Covitz, Marcel Dekker, New York (1974). VIII, 417 pages. \$26.50.

> This book is important for those interested in the electrochemical approach to making synthetic organic chemicals. It is a How-To-Do-It book, written by men well versed in the literature on electro-organic chemistry. Aside from M. J. Allen's vestpocket sized Organic Electrode Processes (Rheinhold, New York, 1950), this is the first attempt to bring all the separate but relevant disciplines into unified focus and to forge the chain that is needed to proceed from an idea to an industrially viable process. The emphasis is on experimental techniques rather than electrochemical engineering, although the latter is by no means ignored.

Chapter 2 on Basic Principles is a gem. Not only are the formal aspects kinetics), but the effects of less publicized variables (agitation, leakage, additives, etc.) are clearly explained. Also, how controlled potential electrolysis, useful in sharpening selectivity of products in batch electrolysis, has to be abandoned in continuous, steady state electrolysis, where selectivity may be controlled by degree of conversion.

Chapter 3, on Apparatus and Techniques, is replete with detailed descriptions, diagrams, and even lists of supply houses where special equipment may be purchased. Special attention is given to materials of construction, selections of solvent and electrolyte, instrumentation, and the various kinds of voltametry that are used to unravel electrode mechanisms. The practical problems of scale-up are nicely discussed.

The next two chapters are for the organic chemists. His reagents are electrons (as chemicals go, they are cheap, indeed). Chapter 4 deals with electron addition, that is, reduction at

Chapter 5, deals with electron abstraction, that is, oxidation at an anode. The various kinds of oxidations that can be performed include the Kolbe following changes should be made: reaction, oxidation of unsaturated compounds, anodic halogenation, and other miscellany.

The authors deserve kudos for in- l_{12}/P_a . polymerization, and Chapter 7, Electrocoating, both of which are new and fast moving developments in the applied plastics industry. They, too, have made substantial contributions in these

Another unique feature of this book

the book first, with interest and pleasure. He then went through the Q and A bit, for a second helping of the same lively fare.

Appendix B, Glossary of terms, is very lucid, and Appendix C, Charts of Electrode Potentials, is obviously useful.

This book has an excellent author practice of what they teach, and an and subject index. The text is remark-up-to-date Baedeker of the published ably free from technical and typographical errors.

> R. B. MACMULLIN ASSOCIATE EMERITUS, RBMA FELLOW, AICHE MEMBER EMERITUS, ESC

ERRATA

In "Prediction of Diffusion Coefficients for Nonelectrolytes in Dilute Aqueous Solutions" by W. Hayduk and H. Laudie [20, 611 (1974)], the exponent for visof the science clearly presented (an cosity in Equation (4) was incorrectly achievement, as regards electrode printed as 1.4. Equation (4) should read:

$$D_{12} \frac{13.26(10^{-5})}{\mu_2^{1.14} V_1^{0.589}} \tag{4}$$

W. Hayduk

In "Pressure Drop and Holdup in Stratified Two-Phase Flow" by T. W. F. Russell, A. W. Etchells, R. H. Jensen, and P. J. Arruda [20, 664 (1974)], the second line of Equation (20) on page 666 should

$$+\frac{H_A}{C_BD}\left(6\alpha-2\alpha^3-6\beta\sin^{-1}\alpha\right) \quad (22)$$
A. W. ETCHELLS

In "Gas Absorption by Non-Newtonian Liquids in Agitated Vessels" by J. F. Perez and O. C. Sandall [20, 770 (1974)], the figures and figure titles do not agree. The figure titles are in the proper order and the corrected figure order should be: 2, 4, 5, 1, 3.

Orville C. Sandall

In "Computation of Vapor Liquid Equilibria for Hydrogen and Light Hydrocarbon Systems" by S. P. Singh and P. K. Mukhopadhyay [18, 1171 (1972)] the

- 1. Equation (19) is valid only up to R=2.4. For R>2.4, $l_{12}/P_{\alpha}=0.01$. 2. The ordinate on Figure 2 should be
- - 3. In Equation (20), T is in °R.
- 4. Equations (21) and (22) yield only approximate values of P_a and T_a . For the estimation of phase equilibria, the Pa and Ta values in Tables 1 and 2 on page 1246 should be used.

P. K. MUKHOPADHYAY

(Continued on page 1246)